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We consider certain effects of the anisotropy of electrical conduc- 
tivity in agIow discharge plasma to whicha uniform external magnetic 
field is applied. 

The effect of the inclination of the external magnetic field upon 
the current distribution at an electrode located in a plane, semi-infinite 
channel is considered in the first section, and a general solution is 
derived. Calculations are performed for some special cases. It was 
found that the inclination of the magnetic field relative to the elec- 
trode surface causes a sharp inhomogeneity in the current distribution. 

The second section deals with the current in a plasma characterized 
by a given nonuniform charge carrier density; the charge carriers are 
assumed to be in a plane channel with nonconductive walls. It is shown 
that the plasma inhomogeneity strongly influences the anisotropy pa- 
rameter dependence of the following ratio: Hall current/current in the 
direction of the electric field. 

When both the magnetic Reynolds number R m and the interaction 
parameter S are sinai1, the electric current density and the electric 
field strength are given by the equations 
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The unit vector of the external magnetic field is denoted by 1, 
and the conce,~tration of the electrons by n, which is assumed to be a 
known function of the coordinates. 

We assume that the magnetic force lines are parallel to the xy- 
plane and that all quantities are independent of the z coordinate. It 
follows from the last equation of (O.1) that E z = const. 

After eliminating the electric field strength E from the first equa- 
tion, we obtain 
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By expressing the components Jx and jy of the current density in 
terms of the stream function r we obtain from Eqs. (0.1) and (0.2) 
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In the following , Eq. (0.3) is used in two specific problems. 
1. The effect of the inclination of the magnetic field vector re- 

lative to the axis of an infinitely long channel with nonconductive 
walls upon the diffusion of a glow discharge plasma was discussed in 
[1, 2]. The authors of [1,2] ignored boundary effects resulting from 
the electrodes. 

We will discuss how the inclination of the magnetic field affects 
the current distribution at an electrode. We assume that a plane semi- 
infinite channel is formed by two'nonconductive walls with the coor- 
dinates y = 0 and y = b and by an electrode (at x = 0) with ideal con- 
duction; the other electode is assumed to be located at infinity. When 
we assume that the electron concentration is constant, we obtain the 
following equation for ~) from Eq. (0.3): 
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The fact that the tangential component of the electric field strength 
vanishes at the electrode, and that the normal component of the current 
density vanishes at the nonconduetive walls leads to the following 
boundary conditions for ~: 

[( 0, 0,] 
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b 

~P_lu=o-~O; ~p[v=b=l" l = f / x d Y .  (1.3) 
o 

When expressed by the dimensionless variables 
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Eq. (1.• and the boundary conditions (1.2) and (1.8) assume the form 
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We introduce the new variables 
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which transform Eq. (1.4) into the Laplace equation and Eq. (1.8) into 
a condition of the form 
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The relations 
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are used for a conformal mapping of the region (considered in the 
plane Z = g, + i~1) onto the half-plane Im~ > 0. It is convenient, 
considering the following discussion, to project the half-plane onto 
the strip 6 < RX < 1 by introducing the relation 
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Since, in the X-plane of the complex potential, we have, for 
reasons of symmetry, 

w =  u +  ~v=)v , (Lio) 

we finally obtain the solution in the form 

z=[l ~w , - 2 , .  
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For p = 1/2, w h e n y = 0  (this occurs either for wr = 0, for0 = 0, 
or for O = rr/2), Eq. (1.11) leads to a linear relation, u = ~. Thus, 

when the magnetic field is parallel or perpendicular to the surface of 
the electrode, the anisotropy of the conductivity does not influence 
the current density (which remains uniform for all wr). 

The effect resulting from an inclination of the magnetic force lines 
relative to the electrode surface can easily be derived for theparticular 
case • = 1/4 (7 = 1). The integrals in Eq. (1.11) maythenbecalculated, 



and the solut ion assumes the  form 
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Accordingly,  we obtain on the e lec t rode  surface 
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which leads to the fol lowing formula for the dimensionless  normal  

component  of the current densi ty at the e lec t rode:  
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The case y << 1 is easy to discuss. When we represent the solut ion 
in the form of a power series 
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we obta in  the equat ions 
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is the solut ion to Eq. (1 . t5 )  for the  condit ions stated in Eq. (1.16). 
This results in the formula 
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for the current densi ty at the e lec t rode .  

The figure with the results c a l cu l a t ed  for )1 = 0, 0.1, and 1.0 in- 

d icates  that an inc l ina t ion  of the m a g n e t i c  f ie ld  causes a strong in- 

homogene i ty  in the current dis tr ibut ion at the e lec t rode .  

2. The results of Hall  current measurements  in a homopolar  con- 

ductor  were published in [3]. It was noted that  the e x p e r i m e n t a l  current 

values  are  many  t imes  smal le r  than the theore t i ca l  values.  The 

authors exp la ined  the d iscrepancy by inhomogene i t i e s  in the discharge 

which prevent  the free flow of the Hal l  current.  

This conclusion can be easi ly  ver i f ied  by the  following s imp le  
exampIe .  Let us assume that  in the rec tangular  region - a  _< x _ a. 

0 _< y _< b, the concent ra t ion  of the charged par t ic les  changes 

\ 

\ 
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Fig. 1. 

according to the law n = n o e -:qxl and tha t  the magne t i c  field is 

pa ra l l e l  to the y-axis .  In this ease,  Eq. (0.3) assumes the form 

a ~  + (I + r ~ + a } 7  = 0,  (2.1) 

where the  minus sign must be taken  for x > 0 and the plus sign for 

x < 0. When the  condi t ion 

is satisfied at  the boundaries,  the solut ion to Eq. (2 . t )  is 

= ~ b v / b ,  (2.2) 

where r  = 0 was assumed at y = 0. 

Equation (2.2) results in 
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By in tegra t ing  (over x and y) the projec t ion  of the first equa t ion  of 

(0.1) onto the Z-axis ,  we obtain 
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where a ;b a b 
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On the other hand, in tegra t ing  the expression 
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n (122 j 

over x under the  condit ions 
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we obta in  
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By ca l cu l a t i ng  I x = 2abj x and insert ing into Eq. (2.3), we obta in  
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Thus, we obtain for the rat io  of Hali current I x to basic current lz, 

I x  o~  (eta)"- 
I z - -  2 ( o h  a a  - -  1) (1 - ~  r -~) - -  ((oTcta) ~ ( 2 . 6 )  

It follows from gq. (2.6) that  the Dr dependence  of Ix / I  z varies 
with the inhomogene i ty  pa ramete r  an .  For a a  ~ 0 we obtain an ex-  

peession which is we l l  known for a uniform p lasma [3]: 

I x  / I z  = 0~-c . (2.7) 

On the other hand, we obtain for cca >> 1 

G m~: (eta)= 
I z -- 1 -}- ~o~ ~- 2eheta " (2.8) 

If wr  > 1, Eqs. (2.8) and (2.7) both y ie ld  Ix / I  z as a l inear  func- 
t ion of cur, but with proport ional i ty  factor 

2~ha~a ~ 1 �9 

If, on the other hand, ~ r  >> 1, I x / I  z is inversely  proport ional  to 

We note, in conclusion,  [hat the effect  of a one -d imens iona l  cot> 
due t iv i ty  inhomogene i ty  o n t h e p o w e r  o fa  magne tohyd rodynamicgene r -  
ator and on the no~  ion iza t ion  was previously discussed in [4]. 
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